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ABSTRACT 

Optical coherence tomography (OCT) has become a conventional occular imaging technique which can be used in 

the diagnosis of glaucoma by measuring the retinal nerve fiber layer (RNFL) thickness. This paper reviews various 

techniques used to measure the RNFL thickness. The Gaussian Mixture Model (GMM) makes use of a kernel and cluster 

masks which detects eight retinal layers with nine boundaries. Automated Layer Segmentation model uses iterative 

polynomial smoothing procedure and detects five retinal layers accurately. The Markov Boundary model uses edge 

detection kernel which detects the outer and inner retinal boundaries along with retinal landmarks. GMM detects more 

number of retinal layers thereby more information is obtained for better pathological and ocular diagnosis. 

KEYWORDS: Glaucoma, Optical Coherence Tomography (OCT), OCT Layer Segmentation, Boundary Detection, 

Edge Detection, Retina, Retinal Nerve Fiber Layer (RNFL), Kernel, Filter 

1. INTRODUCTION 

Optical coherence tomography (OCT) is an optical signal acquisition and processing method. As it is a 

noninvasive real time imaging tool, with micrometer-scale resolution, it is the preferred method of imaging nerve tissues 

such as retina. OCT offers higher resolution than high-frequency ultrasound. Ophthalmology has been one of the main 

application areas of Optical Coherence Tomography [1] since its invention in 1991. OCT allows a direct visualization of 

the retina and its layered structure. Measurement of the thickness of retinal nerve fiber layer helps in the diagnosis of 

ocular diseases like glaucoma, characterised by the loss of the retinal nerve fiber. 

This review paper has been organized as follows. This section, continues with a discussion of the relevant 

ophthalmology and explains the general theory behind OCT. Section II deals with the various techniques that are involved 

in the detection of RNFL. The principle of these techniques along with the experimental implementations and results are 

discussed in the section. Section III presents the results by comparing the techniques discussed in section II and               

Section VII offers some concluding remarks.  

1.1. Ophthalmology 

So that the reader will understand the clinical significance of the problem at hand, this section briefly overviews 

the relevant ophthalmology. The posterior portion of the eye is a hollow sphere filled with the clear, jelly-like vitreous 

humor and the retina is a thin film of nervous tissue lining the inner surface of the posterior ocular wall [2]. The eye’s 

radial geometry makes the terms inner (toward the centre of the eye) and outer useful for orientation within the retina.   

Just outside the retina lies the choroid, a tissue whose dense network of blood vessels renders it opaque to infrared light. 

The fovea is a small depression in the retinal surface, at the location corresponding to the centre of the visual 

field. Many diseases affecting vision cause changes in retinal thickness, with macular edema being a prominent example. 
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Macular edema is the primary cause of vision loss in diabetics [3] and tracking retinal thickness changes over time is 

important in determining the appropriate treatment [4]. Currently, the slit lamp bio microscope is the most commonly used 

clinical device for assessing retinal thickness. With it, the ophthalmologist views a magnified, stereo image of the retina 

illuminated obliquely by a narrow slit of light and subjectively assesses thickening. 

Though thickening above a certain threshold is readily detected based on gross appearance, there is no measuring 

scale for precise quantification. This lack of quantification makes it difficult to track changes over time. OCT’s 

quantitative nature permits accurate and precise measurements of patient changes.  

1.2. General OCT Theory 

An OCT system is essentially a Michelson interferometer; the two light paths are called the reference path and the 

imaging path and the subject’s eye terminates the imaging path [5].  

 

Figure 1: Schematic Drawing of the OCT Emphasizesg how it is Essentially a Michelson Interferometer the 

Outgoing Light Paths are Solid Lines, While Reflected Light is Drawn as Dashed Lines [11] 

Figure 1 illustrates this concept with a schematic drawing of an OCT system. In the figure, the reflected light is 

represented by the electric field vectors, in the imaging path and in the reference path. Solid lines depict outgoing light and 

dashed lines depict reflected light. To understand OCT operation, one should first imagine the eyeball in Figure 1 replaced 

by a mirror located exactly 1 m from the beam splitter. The reference mirror in this thought experiment is initially              

placed 5 m from the beam splitter and then slowly moved outwards to a distance of 1.5 m. 

2. RNFL DETECTION METHODS 

RNFL thickness is an important parameter for clinical and pathological analysis of ocular diseases. Various 

techniques have been adopted in detecting the thickness. In this paper four such methods have been reviewed namely 

Gaussian mixture model, Automated layer segmentation (Time and Frequency Domain), and Markov boundary model. 

2.1. Gaussian Mixture Model 

This method uses a segmentation algorithm based on an intelligent tracking kernel and a clustering mask based on 

the Gaussian mixture model (GMM). The kernel extracts boundaries by moving and matching its faces with locally 

clustered images generated by GMM clustering. The cluster-guided motion of the kernel enables sensitive classification of 

structures on a single-pixel scale.  

This system targets seven major retinal boundaries. Then, using peak detection, additional two simple boundaries 

are easily grabbed in regions where their distinct features emerge sufficiently in the limited space remaining after the 

previous segmentation. 
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Figure 2: Image Showing Retinal Boundaries and Layer Segmentation Sequence. 

The Boundaries are Segmented Progressively within Each Region of the Sequence [12] 

 

An image of segmented retinal layers is shown in Figure 2. The layers include a vitreous cavity, nerve fiber   layer 

(NFL), ganglion cell layer with an inner plexiform layer (GCL + IPL), inner nuclear layer (INL), outer plexiform layer 

(OPL), outer nuclear layer (ONL), external limiting membrane (ELM), inner segment (IS), outer segment (OS), retinal 

pigment epithelium (RPE), and choroid. For segmentation, the vitreous cavity/NFL, IS/OS, RPE/choroid, OPL/ONL, 

(GCL+IPL)/INL, INL/OPL, NFL/(GCL+IPL), ELM, and OS/RPE boundaries are tracked in the sequence _1 to _9.        

The segmentation layer sequence is based on the level of difficulty associated with the detection of each layer. 

 

Figure 3: Flowchart Showing the Algorithm Steps. In the Main Processing Step, Seven Retinal 

Boundaries are Tracked Using Intelligent Tracking. The Other Two Boundaries Are Detected  

Using Simple Edge Detection Based on the Previously Tracked Boundary Indices [12] 

 

A flowchart of the algorithm framework is shown in Figure 3. The algorithm consists of three parts:                   

pre-processing, main processing, and post-processing. Pre-processing is performed to prepare the images. The seven 

boundaries are then segmented in the main processing step. The highest contrast region is found and used to define the start 

of each layer, and the kernel system tracks each boundary. After one boundary is tracked, the algorithm limits the region 

for other boundary tracking and searches for the next highest region. These generalized layer segmentation procedures are 

used for the main processing steps. Once the first seven boundaries have been detected, ELM and OS/RPE boundaries are 

extracted using the peak detection method in the post-processing step. The peak detection method is used here because 

these are simple boundaries that can be easily detected once the confidence region has been determined in the main 

processing step. Thus, the total system is operated in hybrid modes. 

The pre-processing stage of this algorithm involves the preparation and processing of the input images so that they 

can be efficiently analyzed. Extraction is performed only in specific areas, and mirror side images are generated. A mirror 

image is also needed for image compensation of each side. When the kernels are applied, both side areas are expanded to 
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contain the virtual image. This allows the side columns to be perfectly covered and tracked. The automated system must be 

robust against noise factors to allow stable and sensitive segmentation. To ensure that the system is equipped with these 

capabilities, a kernel concept is used. Using a regular rectangular kernel, the pixels of interest and their location in each 

layer are defined. The ratio of the kernel size can generally be optimized according to the width: height ratio of the image. 

Generally the height of the kernel is smaller than the width. 

Once the size of the kernel has been determined, GMM clustering is performed to classify the pixels according to 

each pixel’s layer. It separates the components into designated groups. The classification scheme uses the pixel intensity 

and row value for each location because retinal layer segmentation is directed upward and downward. Therefore, the GMM 

is sensitive to changes in the pixel intensity and image contrast levels. This characteristic is used in the algorithm to 

classify the pixels as sensitively as possible.  

 

Figure 4: Images Showing how the Interface Layers are Found Using the Searching Kernel. Red Kernel Passes 

Vertically Down from the First Column of the Original Image to Find the Areas with the Highest Contrast [12] 

 

Maximum kernel contrast is required to find the starting positions of the boundaries in the columns covered by the 

kernel. The kernel then moves downward and compares the change in the image contrast of the pixels as seen in Figure 4. 

To precisely calculate the contrast change and relate this to the structures in the image, the pixels in the kernel are 

processed using GMM clustering so that as the kernel approaches the layer interface, the intensity difference between 

adjacent pixels increases. To determine the interface, this method uses the absolute mean intensity difference between two 

clusters. The pixels in the tracking kernel and the cluster masks are matched. 

The position of the kernel needs to be adjusted to the middle of the structures. The kernel mask can move up and 

down with respect to its original position and can also rotate above the clustering mask. The matching pixels are counted at 

each position and a new kernel position is obtained. The positioning procedure is then repeated so that the new kernel is 

located in its optimum position. Finally, through continuous repetition of this process until the last column, the boundary 

line along the layer interface is formed. 

The segmentation algorithm was implemented using MATLAB, and the datasets were processed using a personal 

computer (CPU: Core i3 3.10 GHz, RAM: 2 GB). OCT retinal images in the fovea were provided by Topcon 3D-2000. 

The images were approximately 700×1200 pixels in size, and a kernel size of 12 × 24 pixels was initially set for the 

extraction. 
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Figure 5: Segmentation Steps. (a) Vitreous Cavity/NFL, (GCL+IPL)/INL, INL/ OPL, OPL/ONL, IS/OS, and 

RPE/Choroid Boundaries are Segmented Using Intelligent Tracking System. (b) NFL/(GCL+IPL) is Segmented in 

the Morphologically Transformed Image to Support the Disappearing NFL Layer by Dragging Pixels up onto the 

Designated Vitreous Cavity/NFL in Every Column. (c) Tracked NFL/(GCL+IPL) Boundary in Transformed Image 

is Rearranged by Restoring Vitreous Cavity/NFL Boundary’s Coordination. (d) ELM and OS/RPE are Detected by 

Simple Peak Detection in Confident Regions for Other Boundaries. [12] 

 

Figure 5(a) shows the results of image processing using the tracking kernel for the six different boundaries.        

The NFL/(GCL+IPL) boundary was found by the same tracking kernel used above. This detected line on the transformed 

image is shown in Figure 5(b). After the NFL/(GCL+IPL) boundary was fully tracked, the image was recovered to the 

original form as shown in Figure 5(c). A sample image of the detected ELM and OS/RPE boundaries is shown in       

Figure 5(d). All the boundary lines in Figure 6 occupy only one pixel per a boundary in a column and are displayed as 

yellow solid lines. This result demonstrates the accuracy of this segmentation method. 

2.2. Automated Layer Segmentation  

In the proposed technique, an OCT image is first cut into multiple vessel and non-vessel sections by the retinal 

blood vessels that are detected through an iterative polynomial smoothing procedure. The non-vessel sections are then 

filtered by a bilateral filter and a median filter that suppress the local image noise but keep the global image variation 

across the retinal layer boundary. Finally, the layer boundaries of the filtered non-vessel sections are detected, which are 

further classified to different retinal layers to determine the complete retinal layer boundaries. 

Based on the dimension of the image information used, there are 3 methods for retinal layer boundary detection:  

 

Figure 6: Example OCT Image of the Peripapillary Region of the Optic Disc. [10] 

 D uses the gradient peak detection  

 D uses edge detection and level sets 

 D uses optimal graph search techniques [1]. 

The unique features of the proposed technique are: 

o From the OCT, the initially detected retinal blood vessels are separated into multiple vessel and non-

vessel sections. 

o The layer boundary of the non-vessel sections can be classified into specific retinal layers for 

interpolation using the prior knowledge of the relative image gradients across different retinal layer 

boundary which have a fixed order. 
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o Bilateral and median filtering techniques are used for smoothing and suppressing local noise 

respectively. 

o 5 layers are obtained after segmentation, which includes the retinal nerve fiber layer (RNFL). 

The retinal layers have to be labelled automatically. For this, the OCT image as illustrated in Figure 6 is first cut 

into multiple vessel and non-vessel sections by the retinal blood vessels. Smoothing technique is used here. 

 

Figure 7: Retinal Blood Vessel Detection. (a)–(d) Light Graph Shows the Mean Image Vector of the OCT Image in 

Figure 6 and the Bold and Smooth Graphs Show the Smoothing Polynomials Fitted in Increasing Iterations [10] 

 

The vessel sections can thus be located through an iterative 

Polynomial smoothing procedure described in Algorithm I. 

Algorithm I 

Step 1: Fit a polynomial P of order N (initial polynomial order) to all sampling data as specified in (1). 

Step 2: Evaluate the maximum fitting error (defined below). Remove the sampling point with the maximum fitting    

error, if the error is larger than a predefined threshold T. 

 

 

Figure 8: OCT Filtering. (a) OCT Image after Bilateral Filtering. (b) OCT Image after  

Median Filtering of the OCT Image in (a) [10] 

 

Step 3: Refit a smoothing polynomial Pi of order Ni as specified in (2) to the remaining sampled data. 

Step 4: Repeat Steps 2 and 3 iteratively until the maximum fitting error is smaller than the predefined threshold 

or the remaining data points are smaller than Ni + 1. 

As described in Step 3, the polynomial order is gradually increased to ensure that the sampling point with larger 

deviation is removed earlier. The polynomial order is set initially at 6 (i.e., N = 6) and adapt it as follows: 

Ni = N + frnd(kp i), i= 1, . . . , n              (1) 

Where frnd(·) and i denote a rounding function and the iteration number. Parameter kp is set at 0.1, which controls 
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the increase speed of the polynomial order. The predefined threshold T specifies the maximum fitting error allowed and it 

can be empirically set between 2 and 4 (the fitting error is the absolute difference between the sampled mean image 

intensity and the fitted smoothing polynomial shown in Figure 7). The bold and smooth graphs in Figure 7(a)–(d) show the 

smoothing polynomials fitted in the first, tenth, twentieth, and thirty seventh iteration, respectively. As Figure 7 shows, the 

polynomials fit closer to the mean image vector of the non-vessel sections during the smoothing process. 

The vessel sections can thus be detected through the global thresholding [8] of the difference between the mean 

image vector and the final smoothing polynomial shown in Figure 7(d).  

The non-vessel sections are removed by bilateral filtering. A median filter is used to suppress the local noise and 

to also keep the image variation across the retinal layer boundary. A bilateral filter may not remove noise of large size as 

shown in Figure 8(a). The filter window needs to be set with care due to specific OCT characteristics. In particular, the 

window height cannot be too large; otherwise, the image variation across the boundary of certain thin OCT layers will be 

smoothed away completely. The window width can instead be much larger than the window height due to the roughly 

horizontal orientation of the OCT layers. A rectangle window is used and the window height is set at 34.2 μm because 

retinal layers are usually thicker than 30.4 μm in OCT images. Figure 4(b) shows the OCT image filtered by a median filter 

of 34.2 μm × 193.8 μm. 

 

Figure 9: Retinal Layer Boundary Detection. (a) Edges Detected from the Non-Vessel OCT Sections in Figure 4(b) 

(b) Retinal Layer Boundaries Identified from the Edges in (a). (c) Finally Determined Retinal Layer Boundary [10] 

Retinal layer boundary can thus be detected from the filtered OCT images. The layer boundaries of the non-vessel 

sections are first detected and then classified into different specific OCT layers. Layer boundaries of the vessel sections are 

then determined through linear interpolation of the layer boundaries detected from the neighboring non-vessel sections.   

For each filtered non-vessel section, the edges are first detected using Canny’s edge detector [9] and then the retinal layer 

boundaries from the detected edges are identified. For the filtered OCT image in Figure 8(b), Figure 9(a) shows the image 

edges detected by Canny’s edge detector and Figure 9(b) shows the identified layer boundary of the non-vessel section that 

can be classified to specific OCT layers based on their relative position within each non-vessel section. 

The layer boundary of vessel sections can be further determined through interpolation of the corresponding layer 

boundary of neighbouring non-vessel sections. For the OCT image in Figure 6, Figure 9(c) shows the finally determined 

retinal layer boundary.  

For each test OCT image, multiple retinal layer boundary pixels are first labelled by medical experts and a 

complete retinal layer boundary is determined through spline fitting of the labelled pixels. The thickness of a retinal layer 

is determined by the distance between the fitted upper and lower layer boundaries, which will be used as a reference 

standard to evaluate the layer thickness determined by the proposed method. It should be noted that  
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Table 1: Summary of Mean and Standard Deviation of RNFL Thickness Error (in Μm) for 16 Oct Images [10] 

 

 

Only the RNFL thickness that is widely used for glaucoma diagnosis is evaluated. Table 1 shows the average 

RNFL thickness error for the OCT of the four subjects. As shown in Table 1, the proposed method is repeatable for the 

OCT in different visits demonstrating an accurate and reliable RNFL thickness assessment. Experiments over OCT for four 

subjects show that the proposed technique segments an OCT image into five retinal layers accurately. 

2.3. Markov Boundary Model 

The boundary-detection system presented here uses a one-dimensional edge-detection kernel to yield edge 

primitives. These edge primitives are rated, selected, and organized to form a coherent boundary structure by use of a 

Markov model of retinal boundaries as detected by OCT. 

In designing a retinal boundary detector, in this model retinal anatomy and the principles of OCT operation are 

used to make various assumptions about the image boundary characteristics. To begin, the normal retina has smooth 

boundaries without discontinuities or gaps and, within OCT images, the inner boundary is always above the outer 

boundary.  

However, it takes about 1-s to acquire all 100 A-scans, long enough for involuntary eye motion to occur during 

the process. Patient motion can cause artefacts ranging from undulations to apparent breaks in the retinal image. Because 

the OCT acquires each A-scan individually, one-dimensional (1-D) edge detection to each image column individually is 

applied, similar to Thune et al. [7]. 

 

Figure 10: Sample OCT Scan from the Set of Training Images with Anatomical Features Labelled [11] 

In Figure 10 the inner and outer retinal boundaries along with other retinal landmarks and the directions along 

which A-scans are obtained are labelled. 
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Table 2: Individual Steps of Our Algorithm Presented in a Structured Outline [11] 

 

Table 2 outlines the individual steps in the algorithm for clarification. It is important to note that although the 

Markov model parameters are established through a statistical evaluation, once set these parameters are kept constant. 

Thus, for a given B-scan, the algorithm always produces the same result. Initially a 4 X 4 median filter is applied twice to 

each image to suppress the speckle noise. Most of the speckle is removed, while the gross retinal outlines are intact. For 

finite impulse response edge-detection kernel, a 1-D Gaussian second derivative was used. These edge detectors step 

response is a zero crossing whose slope and polarity vary with contrast and polarity of the step. 

 

Figure 11: Edges Found by the Edge Detector [11] 

The upper and lower retinal boundaries in Figure 11 are, for the most part, the brightest edges in each column. 

The initial boundary estimate relies on this general trend by choosing, for each A-scan, the brightest two edges separated 

by at least ten pixels. Initial boundary contours were broken into segments bordered by vertical dislocations larger than ten 

pixels in either contour. The next step is to complete and refine the inner and outer retinal boundaries using information 

from the Markov model and as much of the initial approximation as possible. Three distinct cases can occur when 

extending a boundary between segments and in each case, it is determined if either contour in the new segment is 

continuous with a boundary in the neighbouring determined segment. 

The initial boundary approximations were segmented at discontinuities and so at least one segment contour will 

always fail the ten-pixel criterion for continuity. At this point, a fairly accurate boundary description of the retina has been 

set. Although a Markov model of the retinal structure is invoked, it is used to select from existing edge responses and not 

to interpolate between edges or to correct edge positions. According to the initial assumption the retinal boundary must be 

smooth, so a final spline-based adjustment is applied. The centroids of each consecutive (non overlapping) group of three 

boundary points are computed.  
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The retinal thickness values resulting from the boundaries rather than directly assessing the boundary were 

evaluated. The boundaries determined by the algorithm generally followed the retinal contours extremely well; the 

deviations that did occur were most commonly in the outer retinal boundary. Most scans required very little or no 

correction, as in others suffered noticeable dips or rises in the boundaries, causing larger errors. The incidence of each error 

type is presented in Table IV for the new algorithm. 

Table 3: Summary of Errors in Determination of Average Retinal 

Thickness for the New Algorithm [11] 

 

The incidence of each error type is presented in Table 3 for the new algorithm. The results for the entire set of 

1450 images are listed as well as the results from the set of 330 training images. 

Our algorithm determines retinal thickness with an error comparable to the 10- m fundamental OCT resolution 

and reported intersession repeatability for the vast majority of the 1450 OCT images. Most of the remaining errors were 

still less than 10% of normal retinal thickness and, thus, represent a substantial improvement over current clinical 

measurements. There were four basic sources of error. 

 The large amount of speckle noise was not completely removed by median filtering and induced many spurious 

edges.  

 The median filtering introduces its own errors as well, by erasing small image features and blurring some of the 

small discontinuities between adjacent A-scans. 

 Furthermore, the 1-D edge detector selects the leading edges of the retinal boundary peaks. 

 There was a discrepancy between the retinal boundary model used for the algorithm design and the edges chosen 

for the hand corrections. Retinal boundaries in OCT images were assumed to be edges featuring large intensity 

gradients and lying below very dark regions. 

The contribution in this paper can perhaps best be characterized as the first, fundamental building block in a 

complete OCT retinal analysis system, based on a sophisticated mathematical model of retinal structure. 

3. RESULTS 

The detection of the retinal fiber layer thickness from an OCT image is important for the diagnosis of glaucoma. 

Three measurement techniques have been reviewed.  

Gaussian Mixture Model is an automatic hybrid framework which can accurately and stably segment eight retinal 

layers with nine boundaries. The basic idea that the intensity change is highest at the middle of the interface between the 

layers is the concept used to detect difficult boundaries. A method that tracks the changes between neighbouring pixels 

using two masks is developed to overcome the problems of image degradation, such as excessive speckle noise and low 

image contrast. A major disadvantage of GMM clustering is that spatial dependences are not taken into account. However, 

kernels naturally include spatial dependences. 
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The proposed technique for automated layer segmentation first detects the retinal blood vessels and accordingly 

cuts an OCT image into multiple vessel sections and non-vessel sections. The non-vessel sections are then smoothed by a 

bilateral filter and a median filter. Finally, retinal layer boundaries of the smoothed non-vessel sections are detected and the 

complete retinal layer boundaries are determined through interpolation.  

The retinal boundary-detection system described in Markov Boundary detection determines the average retinal 

thickness to accuracy comparable to the machine resolution for the vast majority of OCT images. Reliable and accurate 

measurements of retinal thickness can be expected to improve both the clinical usefulness of the OCT, as well as patient 

care. 

4. CONCLUSIONS 

In ophthalmology quantitative analysis of retinal structures is important for estimating pathological changes and 

diagnosing retinal diseases using OCT, which is an optical signal acquisition and processing method where, the resolution 

achieved is of the order of micrometer and the images are three-dimensional in nature. Glaucoma characterized by the loss 

of the retinal nerve fiber can be diagnosed by measuring the retinal nerve fiber layer (RNFL) thickness within OCT 

images. Of the three techniques reviewed the GMM gives eight retinal layers with nine boundaries and is therefore more 

reliable, accurate and has a higher computational speed than the other two methods. 
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